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Stress during pregnancy has a negative effect on the fetus. However, 
maternal exercise has a positive effect on the cognitive function of the 
fetus and alleviates the negative effects of stress. This study aimed to 
demonstrate whether exercise before pregnancy has a protective ef-
fect on prenatal stress-induced impairment of memory, neurogenesis 
and mitochondrial function in mice offspring. In this experiment, immu-
nohistochemistry, Western blot, measurement of mitochondria oxygen 
respiration, and behavior tests were performed. Spatial memory and 
short-term memory of the offspring from the prenatal stress with exer-
cise were increased compared to the offspring from the prenatal stress. 
The numbers of doublecortin-positive and 5-bromo-2’-deoxyuridine- 
positive cells in the hippocampal dentate gyrus of the offspring from the 
prenatal stress with exercise were higher compared to the offspring 

from the prenatal stress. The expressions of brain-derived neurotrophic 
factor, postsynaptic density 95 kDa, and synaptophysin in the hippo-
campus of the offspring from the prenatal stress with exercise were 
enhanced compared to the offspring from the prenatal stress. Oxygen 
consumption of the offspring from the prenatal stress with exercise 
were higher compared to the offspring from the prenatal stress. Exer-
cise before pregnancy alleviated prenatal stress-induced impairment of 
memory, neurogenesis, and mitochondrial function. Therefore, exercise 
before pregnancy may have a protective effect against prenatal stress 
of the offspring.
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INTRODUCTION

Prenatal stress reduces cognitive function in infancy and adult-
hood (Polanska et al., 2017). Stress during pregnancy reduces mi-
tochondrial content and increases oxidative stress in the hippocam-
pus of offspring, contributing to reduced neurogenesis and cogni-
tive decline (Zheng et al., 2015). The hippocampus plays a variety 
of roles, including controlling short-term and long-term memory 
and emotion-related information. Newly generated neurons en-
hance the learning and memory functions of the hippocampus 
(van Praag et al., 2005). Aging, irradiation, and stress reduce neu-

rogenesis in the dentate gyrus of the hippocampus (Karten et al., 
2005; Madsen et al., 2003).

Hippocampal mitochondria regulate calcium homeostasis and 
energy-requiring neurotransmission, mechanisms important for 
learning and memory (Mehdizadeh et al., 2017). Madrigal et al. 
(2001) reported that chronic stress inhibits the mitochondrial re-
spiratory chain, resulting in mitochondrial dysfunction. Rezin et 
al. (2009) stated that the pathological causes of depression and bi-
polar disorder are mitochondrial dysfunction and biochemical 
damage to the mitochondrial electron transport system. Stress is 
known to reduce mitochondrial oxygen consumption and ATP 
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production associated with neurogenesis (Seo et al., 2019).
Maternal exercise during pregnancy is known to bring about 

beneficial changes in the health status of the fetus and to reduce 
anxiety and depression (Murtezani et al., 2014). Maternal exercise 
may have beneficial effects on the cognitive development of off-
spring. For example, offspring of mothers who exercised prenatally 
have been known to show improved language skills. These find-
ings may be related to brain changes, such as enhanced fetal brain 
maturation (Labonte-Lemoyne et al., 2017; Murtezani et al., 2014). 
Exercise before and during pregnancy is effective in improving 
brain function and development in offspring (Wiebe et al., 2015). 
Additionally, exercise before pregnancy may reduce changes caused 
by prenatal stress (Luft et al., 2020). Exercise has a protective ef-
fect against stress-induced brain changes (Bustamante et al., 2020; 
Park et al., 2020).

Several studies have demonstrated the beneficial effects of ma-
ternal exercise during pregnancy on the child’s neurobehavioral 
development and hippocampal neuroplasticity. However, the ef-
fects of maternal exercise before pregnancy on fetal stress-related 
cognitive function, hippocampal neurogenesis, neuroplasticity, 
and mitochondrial function are still unknown. Therefore, this 
study aimed to demonstrate whether exercise before pregnancy 
has a protective effect on prenatal stress-induced impairment of 
memory, neurogenesis and mitochondrial function in mice off-
spring. For this experiment, immunohistochemistry, western blot, 
mitochondrial oxygen respiration measurement, and behavioral 
tests were performed.

MATERIALS AND METHODS

Experiment animals
Four-week-old C57BL/6 mice were used in the experiments. 

Mice were individually housed in cages at a controlled tempera-
ture (23°C±2°C) and maintained under light-dark cycles com-
prising 12 hr each of light and dark. This study was approved by 
the Kyung Hee university Institutional Animal Care and Use Com-
mittee (Seoul, Korea) (KHUASP (SE)- 21-179). Before pregnancy, 
female C57BL/6 mice were divided into exercise and nonexercise 
groups (n=8 in each group). After pregnancy, these mice were 
randomly divided into the following groups (n=4 per group): 
control group, exercise group, stress exposed during pregnancy 
group, and stress-exposed during pregnancy with exercise group. 
The offspring were assigned into the four groups (n=10 per group): 
offspring from the control group, offspring from the exercise group, 
offspring from the prenatal stress group, and offspring from the 

prenatal stress with exercise group.

Exercise protocol before pregnancy
According to previously described methods (Hong et al., 2020), 

the exercise group exercised on a treadmill made for animals for  
6 days a week for 8 consecutive weeks before mating. The exercise 
load consisted of running at an initial speed of 3 m/min for the 
first 5 min, 5 m/min for the next 5 min, and 8 m/min for the last 
20 min at an incline of 0°. Animals in the nonexercise group did 
not run but stayed on the treadmill for the same amount of time.

Stress exposure to pregnant mice
Pregnant mice were subjected to electric foot shocks by placing 

each mouse in a box with a bottom made of stainless steel grids, 
according to following method with minor modifications (Shi and 
Davis, 2002). A stimulator was used to deliver scrambled electric 
shocks through a floor grid. An interval timer was connected to 
the stimulator, which delivered 5-sec electric shocks every 30 sec 
for 5 min at an intensity of 0.5 mA.

Elevated plus maze test
Anxiety-related behaviors of pups were assessed using the ele-

vated plus maze test according to following method (Park et al., 
2019). The plus maze was constructed black acrylic with two open 
arms (50×10×36 cm) and two closed arms (50×10×36 cm), 
where the two arms met and connected to a central platform (10×  
10 cm). The entire plus maze was raised 60 cm above the floor 
and illuminated by a 100-W light bulb fixed 2 m above the maze 
floor. Mice were placed on the central platform facing a closed arm 
and allowed to explore the maze freely for 300 sec. We measured 
entry and time spent in the open arms were measured.

Morris water maze task
The Morris water maze task was used to assess spatial learning 

and working memory according to following method (Seo et al., 
2019). One day before training, the pups were habituated to swim-
ming for 60 sec in a pool without a platform. All pups were trained 
and recorded 3 times a day for five consecutive days. Probe trials 
were performed 24 hr after the final training session. When pups 
discovered the platform, it was allowed to remain there for 30 sec. 
If the pups did not find the platform within 60 sec, it was manu-
ally guided to the platform. Pups underwent a 60-sec retention 
probe test, after which the platform was removed from the pool. 
Data were collected automatically using the Smart Video Track-
ing System (Smart version 2.5, Panlab, Barcelona, Spain).
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Step-through avoidance task
To assess short-term memory, we performed a step-through 

avoidance task 24 hr after training according to following method 
(Park et al., 2020). Latency was measured for each group. During 
training session, pups were placed in a light compartment by a 
lamp (60 W) and the guillotine door was raised to allow pups to 
enter the dark compartment. The guillotine door was closed when 
the pups’ hind legs entered the dark compartment. An electric 
foot shock (0.2 mA) was delivered for 2 sec through the grid floor. 
This process was repeated 24 hr after the training session. The 
time elapsed before the pups entered the dark compartment was 
recorded. Delays longer than 180 sec are considered 180 sec.

Doublecortin immunohistochemistry
Doublecortin (DCX) immunohistochemistry was performed 

according to following method (Kim et al., 2015). The sections 
were incubated overnight with mouse anti-DCX antibody (1:500; 
Santa Cruz Biotechnology, Santa Cruz, CA, USA), and then incu-
bated for 1 hr with biotinylated mouse secondary antibody. The 
bound secondary antibody was amplified using a Vector Elite ABC 
kit (Vector Laboratories, Burlingame, CA, USA). The antibody–
biotin–avidin-peroxidase complexes were visualized using 0.02% 
diaminobenzidine. The sections were mounted on gelatin-coated 
slides. The slides were air-dried overnight at room temperature, 
and the coverslips were mounted using Permount (Fisher Scientif-
ic, New Jersey, NJ, USA).

5-bromo-2’-deoxyuridine immunohistochemistry
5-bromo-2´-deoxyuridine (BrdU) immunohistochemistry was 

performed according to following method (Lee et al., 2016). The 
brain sections were first permeabilized by treating in 0.5% Triton 
X-100 in phosphate-buffered saline for 20 min, incubated in 50% 
formamide-2 x standard saline citrate at 65°C for 2 hr, denatured 
in 2 N HCl at 37°C for 30 min, and washed twice in 100 mM 
sodium borate (pH, 8.5). Tissue sections were treated overnight at 
4°C with BrdU-specific mouse monoclonal antibody (1:600; Roche, 
Mannheim, Germany). The sections were then treated with bioti-
nylated mouse secondary antibody (1:200; Vector Laboratories) for 
1 hr. The sections were incubated in 50 mM Tris-HCl (pH 7.6) 
with 0.02% diaminobenzidine, 40-mg/mL nickel chloride, and 
0.03% hydrogen peroxide for 5 min. After BrdU staining, differ-
entiation of BrdU-positive cells was evaluated in the same section 
using a mouse antineuronal nuclei antibody (1:1,000; Chemicon 
International, Temecula, CA, USA). Slides were then air-dried 
overnight at room temperature, and coverslips were mounted us-

ing Permount (Fisher Scientific).

Western blotting for brain-derived neurotrophic factor, 
postsynaptic density 95 kDa, and synaptophysin

According to following method (Seo et al., 2019), the hippo-
campal tissues were collected, homogenized on ice, and lysed in a 
lysis buffer. Proteins were quantified using Bradford protein assay 
(Bio-Rad, Hercules, CA, USA). After electrophoresis, proteins were 
transferred onto nitrocellulose membrane (GE Healthcare Life 
Sciences, Chicago, IL, USA). The membrane was blocked with 
skim milk, then which was treated with mouse β-actin antibody 
(1:1,000; Santa Cruz Biotechnology), rabbit brain-derived neuro-
trophic factor (BDNF) antibody (1:1,000; Bioss Antibodies, Wo-
burn, MA, USA), rabbit postsynaptic density 95 kDa (PSD-95) 
antibody (1:1,000; Abcam, Cambridge, UK), and rabbit synapto-
physin (1:1,000; Abcam). Horseradish peroxidase-conjugated an-
ti-mouse for β-actin (1:3,000) and anti-rabbit for BDNF, PDS-
95, synaptophysin (1:5,000) were used as secondary antibodies.

Measurement of mitochondria oxygen respiration
High-resolution oxygen consumption measurements were per-

formed using an Oroboros Oxygraph-2 K (Oroboros Instruments, 
Innsbruck, Austria) according to following method (Anderson et 
al., 2011). The sample was moved to a chamber with 2 mL of as-
say respiration buffer. The mitochondrial oxygen consumption 
protocol comprised 5 mM glutamate, 2 mM malate (complex I 
substrates), 4 mM adenosine diphosphate infusion (ADP) (state 3 
condition), and 3 mM succinate. The oxygen consumption rate 
was represented as pmol/min/mg of wet tissue weight.

Data analysis
The detected bands were quantified using a computer-assisted 

Image-Pro Plus analysis system (Media Cybernetics, Inc., Silver 
Spring, MD, USA) to compare the relative expression levels. All 
data were analyzed using IBM SPSS Statistics ver. 25.0 (IBM Co., 
Armonk, NY, USA) and expressed as mean±standard error of the 
mean. One-way analysis of variance followed by Duncan post hoc 
test was used to compare the groups. Statistical significance was 
set at P<0.05.

RESULTS

Behavioral tests
The results of behavioral tests are shown in Fig. 1. In the Morris 

water maze task, the proportion of time taken by the offspring ex-
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posed to prenatal stress in occupying the probe quadrant was low-
er than that required by those not exposed to prenatal stress. Off-
spring from the prenatal stress with maternal exercise group spent 
a longer time occupying the probe quadrant compared to the time 
spent by offspring from the prenatal stress group. In the elevated 
plus maze task, the offspring exposed to prenatal stress spent less 
time in the open arm than those not exposed to prenatal stress did. 
Offspring belonging to the prenatal stress with maternal exercise 
group spent more time in the open arms compared to that spent 
by their counterparts from the prenatal stress group. The offspring 
exposed to prenatal stress entered the open arms fewer times than 
those not exposed to prenatal stress did. Offspring from the pre-
natal stress with maternal exercise group entered the open arms 
more times than the offspring from the prenatal stress group did. 
In the step-through avoidance task, the latency to enter the shock 

compartment was shorter among offspring exposed to prenatal 
stress than in offspring not exposed to prenatal stress. Offspring 
from the prenatal stress with maternal exercise group exhibited a 
longer latency to enter the shock compartment compared to that 
exhibited by their counterparts from the prenatal stress group.

DCX and BrdU-positive cells in the dentate gyrus
The results of DCX and BrdU-positive cells in the dentate gy-

rus are shown in Fig. 2. DCX and BrdU-positive cells were sig-
nificantly suppressed in offspring exposed to prenatal stress in com-
parison to their counterparts that were not exposed to prenatal stress. 
Offspring belonging to from prenatal stress with maternal exercise 
group showed increased DCX and BrdU-positive cells compared 
to those exhibited by the offspring in the prenatal stress group. 
Offspring from the maternal exercise group did not show a signif-

Fig. 2. Number of DCX-positive and BrdU-positive cells in the dentate gyrus. (A) Photomicrograph of DCX-positive cells. (B) Photomicrograph of BrdU-positive cells. (C) 
Number of DCX-positive cells in each group. (D) Number of BrdU-positive cells in each group. The scale bar represents 500 µm in each group. Data are presented as 
mean± standard error of the mean. DCX, doublecortin; BrdU, 5-bromo-2’-deoxyuridine; CON, offspring born in the control group; CON+EX, offspring born in the mater-
nal exercise group; Stress, offspring born in the prenatal stress group; Stress+EX, offspring born in the prenatal stress with maternal exercise group. *P< 0.05 com-
pared to the control group. #P< 0.05 compared to the stress group.
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icant increase in DCX and BrdU-positive cells compared to those 
observed in the offspring from the control group.

BDNF, PSD-95, and synaptophysin expression in the 
hippocampus

The expression levels of BDNF, PSD-95, and synaptophysin in 
the hippocampus are shown in Fig. 3. BDNF, PSD-95, and syn-
aptophysin expression levels were significantly suppressed in off-
spring exposed to prenatal stress compared to the expression levels 
observed in their counterparts not exposed to prenatal stress. The 
offspring in the prenatal stress with maternal exercise group showed 
increased BDNF, PSD-95, and synaptophysin levels compared to 
those in the prenatal stress group.

Mitochondrial oxygen respiration in the hippocampus
The results of mitochondrial oxygen respiration are shown in 

Fig. 4. Mitochondrial oxygen respiration in complex I substrate 
was reduced in offspring exposed to prenatal stress compared to 
their counterparts that were not exposed to prenatal stress. Off-
spring from the prenatal stress with maternal exercise group showed 
an increase in oxygen consumption compared to offspring from 
the prenatal stress group. Mitochondrial oxygen respiration in 
complex I substrate and state 3 conditions did not differ signifi-
cantly among the groups. Mitochondrial oxygen respiration in 
complex I, state 3 condition, and complex II substrate was signifi-
cantly decreased in offspring exposed to prenatal stress compared 
to those observed in offspring not exposed to prenatal stress. Off-
spring from the prenatal stress with maternal exercise group showed 
an increase in oxygen consumption compared to that observed in 
their counterparts from the prenatal stress group.
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Fig. 3. Expressions of BDNF, PSD-95, and synaptophysin in the hippocampus. (A) Representative expression of BDNF, PSD-95 and synaptophysin. (B) Density of BDNF 
expression in each group. (C) Density of PSD-95 expression in each group. (D) Density of synaptophysin expression in each group. Data are presented as mean± stan-
dard error of the mean. BDNF, brain-derived neurotrophic factor; PSD-95, postsynaptic density 95 kDa; CON, offspring born in the control group; CON+EX, offspring 
born in the maternal exercise group; Stress, offspring born in the prenatal stress group; Stress+EX, offspring born in the prenatal stress with maternal exercise group. 
*P< 0.05 compared to the control group. #P< 0.05 compared to the stress group.
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DISCUSSION

Prenatal stress results in learning and memory deficits associat-
ed with inhibition of hippocampal neurogenesis (Lemaire et al., 
2000). Prenatally stressed rats exhibit impaired working memory 
and spatial learning memory during the Morris water maze test 
(Bustamante et al., 2020; D’Hooge and De Deyn, 2001). In this 
study, prenatal stress had a negative effect on spatial learning mem-
ory and short-term memory compared to fetuses not exposed to 
prenatal stress. Stress can negatively affect mental health, leading 
to anxiety and depression (Vyas et al., 2004). Głombik et al. (2015) 
reported that offspring exposed to prenatal stress showed fewer 
entries into the open arms and more entries into the closed arms, 
suggesting that anxiety-like symptoms were enhanced by prenatal 
stress. The elevated plus maze test is widely used to evaluate anxi-
ety-like behaviors resulting from prenatal stress in rodents (Wein-
stock, 2017). Treadmill exercise before ischemic attack alleviated 
hypoperfusion-induced impairment of short-term memory in rats 
(Lee et al., 2019). Klein et al. (2019) reported that offspring born 
to exercised rats prevented amyloid-β-induced cognitive impair-
ment. Farzad et al. (2020) reported that offspring born to exercised 
rats exhibited enhanced short-term memory. In our study, mater-
nal exercise before pregnancy prevented prenatal stress-induced 
spatial and short-term memory deficits in offspring.

BDNF and synaptic plasticity-related proteins are closely asso-
ciated with stress responses (Vollmayr et al., 2001). BDNF is a 

neurotrophic factor that is abundant in the hippocampus and has 
well-known effects on synaptic plasticity and long-term potentia-
tion (Egan et al., 2003). Additionally, PSD-95 and synaptophysin 
play important roles in the regulation of synaptic function and 
plasticity (Rapp et al., 2004). Prenatal stress is known to inhibit 
BDNF, PSD-95, and synaptophysin. Moreover, it alters hippo-
campal synaptic plasticity and inhibits neurogenesis (Lucassen et 
al., 2006). In this study, prenatal stress significantly reduced hip-
pocampal BDNF, PSD-95, and synaptophysin level in offspring 
exposed to stress during pregnancy compared with offspring not 
exposed to prenatal stress. Conversely, the offspring of mice stressed 
during pregnancy showed significant increase in hippocampal 
BDNF, synaptophysin, and synaptophysin expression by maternal 
exercise before pregnancy.

Reduced hippocampal cell proliferation and DCX expression 
are associated with prenatal stress (Lee et al., 2016). Reduced hip-
pocampal neurogenesis is closely associated with neuropsycholog-
ical disorders, and prenatal stress reduces cell proliferation and 
suppresses DCX expression (Bustamante et al., 2020). In our study, 
the number of BrdU-positive and DCX-positive cells was decreased 
by prenatal stress, indicating that prenatal stress inhibits new cell 
generation. Several studies have reported a relationship between 
maternal exercise and offspring hippocampal neurogenesis (Kim 
et al., 2007; Lee et al., 2006). Lee et al. (2006) reported that ma-
ternal exercise can alter hippocampal neurogenesis in offspring. 
Likewise, our results showed that exercise before pregnancy sig-
nificantly increased the number of BrdU-positive and DCX-posi-
tive cells in prenatally stressed mice. Thus, exercise before preg-
nancy increased new cell production in offspring exposed to pre-
natal stress.

Hollis et al. (2015) reported that decreased mitochondrial re-
spiratory capacity and ATP production in the hippocampus of a 
rat model increased anxiety. Reduced mitochondrial oxygen respi-
ration is associated with reduced mitochondrial function, includ-
ing reduced ATP production (Heo et al., 2017). In our study, off-
spring exposed to prenatal stress had decreased mitochondrial ox-
ygen uptake, indicating reduced mitochondrial function and ATP 
production. Exercise enhances the co-expression of various enzymes 
involved in aerobic energy production in mitochondria (Marques-
Aleixo et al., 2015). Exercise improves the expression of proteins 
related to mitochondrial function and reduces the expression of 
proteins related to oxidative stress (Marosi et al., 2012). Moreover, 
exercise has antioxidant properties and protects neurons from oxi-
dative stress caused by reactive oxygen species (Lawlor and Hop-
ker, 2001). In our study, exercise before pregnancy increased mi-

Fig. 4. Mitochondrial oxygen consumption. Data are presented as means±  
standard errors of the mean. CON, offspring born in the control group; CON+EX, 
offspring born in the maternal exercise group; Stress, offspring born in the pre-
natal stress group; Stress+EX, offspring born in the prenatal stress with mater-
nal exercise group. GM, glutamate and malate; ADP, adenosine diphosphate; 
SUCC, succinate. *P< 0.05 compared to the control group. #P< 0.05 compared 
to the stress group.
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tochondrial oxygen consumption in offspring exposed to prenatal 
stress. Therefore, exercise before pregnancy may alleviate decreased 
mitochondrial oxygen consumption in offspring exposed to pre-
natal stress.

Exercise before pregnancy alleviated prenatal stress-induced 
impairment of memory, neurogenesis and mitochondrial function. 
Therefore, exercise before pregnancy may have a protective effect 
against prenatal stress of the offspring.
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